
ABSTRACT

T
his paper presents a model and
procedure for determining crew
composition for a new technology

like the Navy’s DDX. Here the prototype
DDX manpower scheduling problem is
modeled as a project scheduling problem
with multi-purpose resources (PSMPR)
where multi-skilled sailors form teams to
accomplish interrelated onboard tasks. A
hybrid decomposition algorithm that in-
corporates constraint programming (CP)
and a tabu search (TS) metaheuristic is de-
veloped for solving this NP-hard problem. In
computational experiments, the perfor-
mance of our hybrid algorithm is tested
and compared with solutions found using
mixed-integer linear programming (MILP)
with CPLEX and with lower bounds ob-
tained from a bin packing problem with
conflicts (BPC).

Keywords: manpower scheduling;
resource-constrained project scheduling;
constraint programming; tabu search; hy-
brid approach;

INTRODUCTION
The manpower scheduling problem

addressed in this paper is motivated by
the problem of reducing crew size for the
U.S. Navy’s DDX class ships. We model
this problem by combining resource-
constrained project scheduling with gener-
alized assignment models. Our goal in this
effort is to develop and explore modeling
and computational techniques for this vari-
ety of problem. We do not propose to model
all of the complexities of the DDX manning
problem here though. We believe that with
suitable modification such a tool can be
used to determine either general crew size
and training requirements or specific re-
quirements for a specific mission.

Project scheduling has a long and color-
ful history in the Navy. The well-known
Program Evaluation and Review Technique
(PERT) was developed to aid the nuclear
submarine development program in the
1950’s. There, the optimal sequence of inter-
related tasks was determined in order to
finish a project or a group of projects by
a certain time and within a cost constraint.
In the environment where resources can
be acquired at will, the optimization in-

volved with project management is now
routine. But the resource-constrained pro-
ject scheduling problem (RCPSP) in the
DDX context presents a formidable sched-
uling problem. Depending on the mission,
the list of tasks to be accomplished on board
varies from period to period and, in emer-
gency situations, survival may depend on
scheduling tasks in the correct order. Fur-
thermore, the jobs must be accomplished
with a fixed and multi-skilled crew. A plan-
ner has to determine: i) starting times of all
tasks and time-off (rest) periods; ii) an ap-
propriate assignment of sailors to the pool
of tasks and skills. Since this problem is re-
lated to the project scheduling problem
with multi-purpose resources (PSMPR) in-
troduced by Li and Womer (2006), we name
it DDX-PSMPR.

As a variant of the standard PSMPR,
DDX-PSMPR belongs to the class of
assignment-type resource-constrained pro-
ject scheduling problems (Drexl, Juretzka
et al. 1998). It generalizes the single-mode
RCPSP (Pritsker, Waters et al. 1969) and is
similar to the multi-mode RCPSP (MRCPSP,
(Talbot 1982)) in that a task may be per-
formed in more than one way (mode) with
different combinations of sailors assigned
to the task. The MRCPSP only models the
flexibility of executing a task through the
trade-off between time and resources, but
not the intrinsic ‘‘versatility’’ of resource
units. As the complexity of tasks’ skill re-
quirements and sailors’ skill-mix increases,
the number of modes in a PSMPR will
explode. The PSMPR is also an extension
of the classical multi-purpose machine
(MPM, (Brucker 2001)) scheduling prob-
lems into the more general project schedul-
ing environment by allowing the presence
of general temporal constraints.

Modeling the tasks of a DDX crew pres-
ents a formidable problem. Briefly, an ap-
proach to the problem is as follows. A
number of sailors need to be assigned to
a group of on-board tasks modeled as a
project that will be performed during a
scheduling horizon. There are time-related
technical requirements among tasks such
as precedence relations, minimum/maxi-
mum time lags and due dates. A task may
require one or multiple skills. We assume
that all the relevant skills required by a task
must be present simultaneously for the task
to progress. A sailor can be described with
multiple skills, but can perform only one
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skill at a time. Sailors must have sufficient rest
during their service on board, e.g., at least 8
hours of rest during any 48-hour period. The
workload assigned to a sailor during the sched-
uling horizon cannot exceed the maximum
workload capacity of a sailor. There is a deadline
for the completion time of all the tasks. The
planning decision needs to be made in the inter-
mediate or long run to find the optimal skill-mix
of sailors while minimizing the number of
sailors needed to man a ship. (Based on the skill
mapping solutions, we assume that a training
program can be conducted to equip each sailor
with the corresponding skills they need.) This
requires us to find a schedule with both the
starting time of each task and the right sailor-
task/skill assignment.

The remainder of the paper is organized as
follows. The next section provides some back-
ground about the U.S. Navy’s DDX project, the
on-board operations, and the related past work
in manpower planning and scheduling. Next
we give a formal description of the DDX man-
power scheduling problem with a numeric
example and present its mixed-integer linear
programming (MILP) formulation. Next, a bin
packing model with conflicts (BPC) for the prob-
lem with fixed time scheduling of tasks and rest
periods is introduced. This is used to obtain
a lower bound of the number of sailors required
to man a ship. We then present a decomposition
heuristic algorithm with the cooperation of con-
straint programming (CP) and a tabu search
(TS) procedure. The next section provides exper-
imental results. Finally we draw conclusions and
mention future research opportunities.

BACKGROUND
DDX is the U.S. Navy’s future multi-

mission surface combatant designed to deliver
precision strike and fire support, dominate the
littoral environment and defeat the most chal-
lenging threats (U.S.Navy 2005). In November
2001, the U.S. Navy announced that it would is-
sue a revised Request for Proposal (RFP) for the
Future Surface Combatant Program. The former
DD-21 program would now be known as DDX.
Two concerns about the old DD-21 program
are: first, it was much larger than the current

DDG-51 Arleigh Burke-class destroyers; second,
the Navy was investing too much in a ship pri-
marily designed to accommodate the long-range
Advanced Gun System (AGS). The program fo-
cus would now be on a family of advanced tech-
nology surface combatants, rather than a single
class. In April 2002, Northrop Grumman Ship
Systems was selected as the lead design agent
for DDX. Currently, DDX has achieved all of its
development milestones on schedule. A national
team, led by Northrop Grumman Ship Systems
(prime contractor) and Raytheon (weapon and
electronic systems integrator), is leading the
DDX design effort. The lead ship is scheduled
for fleet delivery in 2011 and to enter service in
2013 (U.S.Navy 2005).

The DDX is developing state-of-the-art
technologies and systems and integrating them
into a complete warfare system. Key technolo-
gies critical to DDX include: electric drive and
integrated power management systems, multi-
function and volume search radar suites, the
Advanced Gun System, and new hull design
emphasizing efficiency at 30-knots sustained
speed, mission payload growth capacity and
stealth.

To justify the investment of these high-end
technologies the optimal utilization of human
resources is required. The meaning of ‘‘optimal
utilization’’ is twofold. First, the crew size is to
be reduced. Although the crew size for DDX is
yet to be defined, the threshold is set to be 150.
This represents major cost saving compared to
crew levels of 330 on Spruance class destroyers
and 220 on Oliver Hazard Perry frigates. Sec-
ond, the reduction in crew size will create an in-
creased need for cross-functional training. The
idea is to have sailors trained functionally
across warfare areas who can then be flexibly
employed as the situation demands. This ap-
proach will result in a more compact, flexible
and versatile crew. In fact, reducing the number
of crew members and improving their perfor-
mance has been listed as one of the eight strate-
gic objectives for the Navy to maintain the
human performance and competence while en-
tering the 21st century (U.S.Navy 2005). There-
fore, determining the right number of sailors
and their skill-mix while satisfying all the on-
board temporal and skill constraints becomes
critical for this new technology.
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Shipboard Operations
Shipboard operations reside in such a com-

plex system that we need to get a clear sense of
what types of operations must be considered. If
a cruise is regarded as a project then an entire se-
quence of tasks must be performed to accom-
plish the project. The tasks are constrained by
temporal relations that must hold among at
least some of them and by resource require-
ments.

Tasks. Tasks are defined as those individual jobs
required to complete an operation; operations
are specific jobs that must be done to perform
a function; and functions are general types of
work that must be performed to accomplish
a mission. That is, a mission is at the highest level,
while tasks reside at the lowest level to support
it. Hence the work-breakdown-structure (WBS) ap-
proach in project management fits well in mod-
eling the system of shipboard operations. We
model a task as an activity with three attributes:
starting time, ending time and processing time
(duration). It is assumed that the duration of
each task is known as a constant, while the start-
ing and ending times are decision variables.
Some shipboard routine tasks include check-in
or check-out, maintenance actions, preventive
maintenance, inspections, predeployment prep-
arations, routine watches, shore patrol, etc. Some
emergencies and unique situations include fire
fighting, damage control, survival, etc. The col-
lection of tasks for any length of scheduling ho-
rizon can be thought of as a project.

Temporal Relations. Temporal relations are con-
straints related to time. They specify one aspect
of the technical requirements. Technically, tasks
are required to overlap with, precede or follow
each other. For example, routine watches must
precede maintenance; an emergency event must
precede any other ordinary tasks. Simultaneous
execution (overlapping) is allowed as long as
some time lags between a pair of tasks are satis-
fied. That is, we consider the general temporal
constraints (Neumann, Schwindt et al. 2002)
which include the precedence constraints prev-
alent in the machine scheduling environment as
a special case. For example, weekly mainte-
nance cannot start until at least 18 hours after

inspection starts (minimum time lag); repairing
must start at most 6 hours after inspection com-
pletes (maximum time lag). We may also impose
a due date on a task, as well as the deadline on
the total completion time (makespan) of the en-
tire project. For example, damage control must
be completed before the fourth day; the entire
project must be finished within 7 weeks.

Resource Requirements. Resource requirements con-
sist of another aspect of the technical require-
ments. The skills that are necessary to perform
a task are given; what is not given and needs
to be determined is which sailors with what
skill sets need to be assigned to a task. Also, a
task may require multiple skills and we assume
that all the skills required by a task must be
present simultaneously. For example, a task of
‘‘repairing’’ may require three different skills:
electronic engineering, mechanical engineering
and computer software. Each of the three re-
quired skills needs to be assigned with one
sailor.

Rest Periods. As in the traditional crew rostering
problem (Kohl and Karisch 2004), time off (rest)
periods have to be assigned to sailors. Under
the shipboard environment, it is necessary to al-
low enough flexibility for rest periods so that
they can be scheduled intelligently to achieve
a shorter makespan. This is different from most
crew rostering problems where the starting and
ending times of rest periods are fixed and only
assignment decisions are made concerning time
off. Also the rest periods need to be distributed
evenly and a minimum number of sailors have
to be on duty at any time. In the most flexible
scenario, such minimum number of required
sailors could vary over time, i.e., a different min-
imum in each time period. Of course special
considerations might also dictate additional
constraints. For example, we assume that there
is a bunk for each sailor but we might also imag-
ine a policy of ‘‘hot bunking’’ where there are
fewer bunks than sailors and the number of
bunks is an additional constraint. This is not in-
cluded in the current formulation however. In
our modeling approach, the rest periods are
modeled together with tasks as activities with
a fixed duration but unknown starting and end-
ing times.
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Past Work
The general problem of manpower plan-

ning and scheduling consists of determining
how to match the available personnel to person-
nel requirements of an organization. Burgess
and Busby (1992) classified this problem into
three categories: manpower planning, person-
nel scheduling and personnel assignments.
Manpower planning, according to Gass (1991),
determines the number of personnel and their
skills that best meets the future operational
requirements of an organization. Personnel
scheduling usually involves setting work pat-
terns (shifts) and assignment of personnel to
these shifts to meet job demands that vary over
time. Personnel assignments deal with the as-
signment of personnel to tasks and work sta-
tions. A recent survey by Ernst, Jiang et al.
(2004) decomposes personnel scheduling into
six sub-modules associated with the process
of constructing a roster. The difficulty with the
current personnel scheduling and rostering ap-
proaches, as pointed out by Ernst, Jiang et al.
(2004), is that ‘‘It is usually not computationally
practical to deal simultaneously with all the modules
required together to generate a roster, though such
an approach is desirable from the perspective of creat-
ing the best overall rosters.’’ They also foresee that
greater quality gains may be obtained not by im-
proving algorithms for solving any individual
module of the problem, but by integrating more
modules into a single problem.

The DDX manpower scheduling problem
studied in this paper is such an attempt that
integrates both scheduling and assignment
decisions into a single problem. This has been
achieved by applying an assignment-type re-
source constrained project scheduling model,
namely, the project scheduling problem with
multi-purpose resources (PSMPR).

PROBLEM DESCRIPTION AND
FORMULATION

The DDX-PSMPR can be formally described
as follows. A set of on-board tasks J have to be
finished by a deadline �T. Each task j 2 J has
a constant processing time pj. A set F of general
temporal relations exists among tasks. dij de-

notes the minimum time lag between the start-
ing times of task i and j, i.e., task j cannot start
until at least dij hours after task i starts. A due
date dj is imposed for some task j 2 J. Each task
j 2 J requires a set of skills Kj 4 K, where K is the
entire skill set relevant for execution of the pro-
ject. Without loss of generality, we assume that
each skill k 2 K requires one sailor to perform
it. Should a task require more than one sailor
with the same skill then it is modeled as requir-
ing multiple skills. A set S of sailors is available.
Each sailor s 2 S may be supplied with a maxi-
mum of � skills and has a maximum workload
W that cannot be exceeded during the schedul-
ing horizon. A sailor has to take a rest with a du-
ration of t hours every l hours. We further make
the following assumptions:

A1) No preemption is allowed, i.e., a task cannot
be interrupted once it starts;

A2) The set of skills Kj have to be present
simultaneously for task j to progress;

A3) A sailor can perform at most one skill at any
time point, i.e., each sailor is treated as
a unary resource.

The objective is to find a feasible roster of
starting times for all the tasks and rest periods
and assignment of sailors to tasks and skills (de-
termining the selected sailors’ skill-mix) that
minimizes the total number of sailors required
to man a ship.

A Numeric Example
Table 1 provides an example of the PSMPR

problem for DDX manpower scheduling.
Ten tasks need to be scheduled over a three-

day horizon, thus the deadline on project make-
span is 72 hours. Each task has a constant pro-
cessing time given in column two. The binary
matrix in column three specifies the type of
skills (K1, K2, K3, K4) required by each task.
For instance, task J1 requires the skill of type 2
(K2). Temporal relations are expressed in the
form of , i, j, dij . as shown in column four,
where dij denotes the minimum time lag be-
tween start of task i and the start of j. For exam-
ple, task J9 cannot start until at least 14 hours
after J1 starts (minimum time lag); task J10 must
start at most 4 hours after J2 starts (maximum
time lag). The last column lists the due date

A DECOMPOSITION APPROACH FOR SHIPBOARD MANPOWER SCHEDULING
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for each task. Each sailor has a maximum work-
load of 40 hours which cannot be exceeded over
the scheduling horizon and must have a rest pe-
riod of 8 hours assigned every 48 hours.

Figure 1 provides two feasible solutions to
the above example. For each sailor, the assign-
ment of tasks and skills is determined (hence
the skills mix of each sailor is determined); the
work/rest schedule is also specified by the start-
ing times of tasks and rest periods (rest periods
are represented by shaded rectangles). Solution-
1 requires 4 sailors whereas Solution-2 requires
only 3 sailors. Notice that both solutions satisfy
all temporal relations, due dates, skill require-
ments, workload constraints and the deadline
on makespan. Both schedules require sailors to
work for long periods of time but we only re-
quired one eight hour rest period in 48 hours.
Clearly, Solution-2 achieves a better objective
value as a result of having a ‘‘smoother’’ sched-
ule (with a makespan of 59), whereas Solution-1
depends on a ‘‘tighter’’ schedule (with a make-
span of 41). That is, the schedule in Solution-2
is a better ‘‘leveled’’ schedule compared with
Solution-1 over the scheduling horizon of 72
hours. Hence it leads to a resource profile with
fewer sailors but requires them for a longer pe-
riod of time. This also reflects the time-resource
trade-off relationship in project manage-
ment and has the flavor of a resource leveling
problem.

When the skill-mix of sailors does not exist,
i.e., each sailor can perform only one skill, the
DDX-PSMPR reduces to one type of resource
leveling problem, namely, the resource invest-

ment problem (RIP, (Neumann, Schwindt et al.
2002)), which is NP-hard (Neumann and
Zimmermann 1999). The DDX-PSMPR itself is
distinct from the RIP due to multi-skilled per-
sonnel, which requires that assignment deci-
sions be made in addition to scheduling
decisions. Most of the existing resource leveling
methods, both exact (see e.g., Mohring (1984)
and Demeulemeester (1995)) and heuristic
(see e.g., Woodworth and Willie (1975), Ahuja
(1976), Harris (1990), Savin, Alkass et al.
(1997), and Brinkmann and Neumann (1996))
procedures, assume that there is no explicit re-
source constraint. Neumann and Zimmermann
(1999) present priority-rule based heuristics for
resource leveling problem with a wide variety
of objective functions, general temporal rela-
tions and explicit resource constraints. New
solution approaches need to be developed for
the assignment-type resource leveling problems
such as the DDX-PSMPR. In the following sec-
tions, we first present the MILP formulation of
the DDX-PSMPR, which proves to be intractable
for problems of reasonable size. We then
introduce a three-phase decomposition heuris-
tic algorithm that utilizes a combination of
methods to solve the problem both efficiently
and effectively.

MILP Formulation of the
DDX-PSMPR

The maximum workload W of a sailor is set
to be maxfW0; u � �Tg, where u is a parameter

Table 1. An example of the DDX-PSMPR problem.

Task
Processing

times (in hours)
Skill

requirements Temporal relations
Due date
(in hours)

J1 13 [0, 1, 0, 0] , J1, J9, 14 . , J1, J5, 10 . 15
J2 6 [0, 0, 1, 0] , J2, J10, 3 . , J2, J8, 6 . , J2, J5, 7 . 40
J3 7 [1, 0, 0, 0] , J3, J4, 9 . , J3, J5, 9 . 20
J4 9 [0, 0, 0, 1] , J4, J10, 8 . , J4, J7, 6 . , J4, J8, 8 . 30
J5 13 [0, 1, 0, 0] , J5, J6, 6 . 50
J6 11 [0, 0, 1, 0] , J6, J1, -19 . 60
J7 8 [1, 0, 0, 0] , J10, J2, -4 . 50
J8 12 [1, 0, 0, 0] - 60
J9 13 [0, 0, 1, 0] - 40
J10 15 [0, 0, 1, 0] - 50

A DECOMPOSITION APPROACH FOR SHIPBOARD MANPOWER SCHEDULING

Military Operations Research, V14 N3 2009 Page 5Military Operations Research, V14 N3 2009 Page 5



representing the percentage of working time
during the scheduling horizon. For example, if
we assume that a sailor’s workload is 8 hours
every 24 hours, then u is set be 1/3. W0 is a lower-
threshold for W. Let M be a large positive integer,
l is the index of time periods ðl 2 L 5 f1;.; �LgÞ,
where �L is calculated by Ø �T =le. Then the MILP
formulation of the problem can be stated as
follows:

Sets and Parameters

J : set of tasks
K : set of skills
S : set of sailors
F : set of temporal relations
Kj : set of skills required by task j
�T : deadline on all tasks in hours
pj : processing time (duration) of task j in hours
dij : minimum time lag between task i and task j

in hours
dj : due date of task j
l : length of a time interval in hours
t : length of rest period in hours
�L : number of time intervals during the sched-

uling horizon

u : workload factor as a percentage of the
total number of hours during the sched-
uling horizon

W : workload limit of each sailor
� : maximum number of skills assigned to

a sailor
W0 : lower threshold for a sailor’s workload

during the scheduling horizon
M : large integer

Decision variables

zs : 1 if and only if sailor s is selected to man the
ship; 0 otherwise.

xjks : 1 if and only if sailor s is assigned to skill k in
task j ; 0 otherwise.

uks : 1 if and only if sailor s is assigned to skill k ;
0 otherwise.

tj : starting time of task j.
tsl : starting time of the l-th rest period of sailor s.
yij : 1 if and only if task i precedes task j,

0 otherwise.
y

j
sl : 1 if and only if task j precedes rest period of

sailor s in period l, 0 otherwise.
ysl

j : 1 if and only if rest period of sailor s in
period l precedes task j, 0 otherwise.

Figure 1. Gantt charts of two feasible solutions to the example in Table 1. The shaded bars represent required
rest periods.

A DECOMPOSITION APPROACH FOR SHIPBOARD MANPOWER SCHEDULING

Page 6 Military Operations Research, V14 N3 2009



Objective function

min
X

s2S

zs

Constraints

P
s2S

xjks 5 1 "j 2 J; k 2 K
j

(1)

P
j2J

P

k2K
j

pjxjks # W � zs "s 2 S (2)

uks $ xjks "j 2 J; k 2 K
j
; s 2 S (3)

P
k2K

uks # � � zs "s 2 S (4)

xjks 1 xjk#s # 1 "j 2 J; k; k# 2 K
j
; k 6¼ k#; s 2 S

(5)

ti 2 tj $ dij "ði; jÞ 2 F (6)

tj 1 pj # minfdj; �Tg "j 2 J (7)

tsl $ ðl 2 1Þ � l "s 2 S; l 2 L (8)

tsl 1 t # l � l "s 2 S; l 2 L (9)

tj $ ti 1 pi 2 M � ð1 2 yijÞ "ði; jÞ 2 J 3 J; i 6¼ j

(10)

tsl $ tj 1 pj 2 M � ð1 2 y
j
slÞ "j 2 J; s 2 S; l 2 L

(11)

tj $ tsl 1 t 2 M � ð1 2 y
sl
j Þ "j 2 J; s 2 S; l 2 L

(12)

yij 1 yji $ xiks 1 xjk#s 2 1

"ði; jÞ 2 J 3 J; i . j; k 2 K
i
; k# 2 K

j; "s 2 S

(13)

y
j
sl 1 y

sl
j $ xjks "j 2 J; k 2 K

j
; s 2 S; l 2 L

(14)

tj; tsl $ 0

zs; xjks;uks; yij; y
j
sl; y

sl
j 2 f0; 1g

Constraints (1) through (5) take care of the
assignment aspect of the problem. The remaining

Constraints (6) through (14) formulate the sched-
uling aspect of the problem. Constraint (1) as-
signs exactly one sailor to each skill required by
a task. Constraint (2) enforces that the maximum
workload of the selected sailors cannot be
exceeded. Constraint (3) states that a sailor must
be assigned to a certain skill to be able to work on
the same skill in any tasks. Constraint (4) enforces
the maximum number of skills assigned to a
sailor. Constraint (5) prevents a sailor from be-
ing assigned to skills required by the same task
due to assumption A2) and A3). Constraint (6)
states the generalized precedence relations and
(7) enforces the due dates for tasks; together they
guarantee time feasibility of the task schedule.
When dij is positive, (6) specifies a minimum time
lag between i and j ; when dij is negative, (6)
becomes a maximum time lag between j and i ;
when dij equals the processing time pj of activity
j, (6) reduces to a precedence relationship speci-
fying that j precedes i. Constraints (8) and (9)
restrict the time frame for each rest period.
Constraints (10) through (12) are the big-M formu-
lation in the classical disjunctive programming
approach. Constraints (13) and (14) state that the
sequence of two activities (tasks or rest periods)
has to be determined if they involve the same
sailor due to the unary resource assumption A3).

As problem size increases, the size of the in-
teger programming model explodes as shown
in Figure 2. Increasing problem size from 10
tasks and 4 skills to 60 tasks and 8 skills will in-
crease the number of variables by a factor of 20
and the number of constraints by a factor of 200.
Although some state-of-the-art software with
advanced presolving techniques, such as CPLEX,
is able to reduce the model size significantly,
a real world problem with reasonable size can
easily involve hundreds of thousands of vari-
ables and millions of constraints, which would
be a formidable task for the traditional exact
methods such as branch-and-bound or branch-
and-cut to solve.

LOWER BOUND BASED ON A BIN
PACKING MODEL

The DDX-PSMPR includes two ingredients:
a scheduling and an assignment problem. If we
are given a feasible schedule for the project, time
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slots with starting and ending times for all tasks
and rest periods will be fixed. Then the problem
of finding an assignment with the minimum
number of sailors to these time slots can be mod-
eled as a bin packing problem with conflicts
(BPC, (Jasen 1999)). Such a transformation is
used to obtain a lower bound for the number
of sailors needed to man the ship without resort
to the schedule of tasks. It also provides insights
for the hybrid decomposition algorithm that
will be developed on the next page.

Sailor Assignment BPC Given a Fixed
Time Schedule

Let O be the set of all task-skill pairs and H
be the set of rest periods. We define an activity
set V ¼ O [ H that includes all task-skill pairs
and rest periods of duration w1, w2,.,wjVj.
Given a fixed time schedule, the starting
times of all activities are determined, i.e.,
ti 5 �tiði 5 1;.; jVjÞ. Then the sailor assignment
BPC can be defined as follows. Two activities
are conflicting if they cannot be assigned to the
same sailor. The problem is to assign activities
to the least number of sailors while ensuring

that the total weights (workloads) of all tasks
assigned a sailor does not exceed W and no
sailors can be assigned to conflicting activities.
Let graph G(V, E) be the sailor assignment con-
flict graph with vertex set V and edge set E. An
edge (i, j) exists if activities i and j are conflicting
with each other. A pair of activities (i, j) are con-
flicting when one of the following holds:

i) w1 1 w2 . W.
ii) Activities i and j represent skills required by

the same task, hence need to be present
simultaneously (Assumption A2)).

iii) Activities i and j overlap in the given
schedule, i.e.,

maxf�ti 1 wi;�tj 1 wjg2 minf�ti;�tjg, wi 1 wj:

(15)

ii) and iii) are due to Assumption A3) that a sailor
is treated as a unary resource.

The integer linear program for the sailor as-
signment BPC can be written as:

min
X

s2S

zs

subject to
Constraints (1) through (4)

xiks 1 xjk#s # 1 "ði; jÞ 2 E; k 2 K
i
; k# 2 K

j
; s 2 S

(16)

When one of the conflicting pair i represents
a rest period, (16) becomes (17):

xjks 5 0 "ði; jÞ 2 E; k 2 K
j; (17)

which prevents assigning s to any skills re-
quired by j. Constraints (16) are not needed
when both i and j represent rest periods since
no assignment for a rest period is needed (a rest
period is always associated with a specific
sailor). The following two observations can be
made concerning the BPC model:

O1) The conflict graph G(V,E) can be constructed
by any feasible schedule without knowing
the assignment solutions to the DDX-PSMPR.

O2) The restrictiveness of the BPC model is
directly affected by the number of Con-
straints (16), i.e., the density of the con-
flict graph G(V,E). The sparser is G(V,E),

Figure 2. The effect of problem parameters on MILP
model size.
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potentially the better objective value (fewer
number of sailors) can be achieved.

The above BPC model is used in two differ-
ent ways in our decomposition algorithm. Prior
to the main solving phase, it is used to obtain
a lower bound to the original problem; during
the algorithm iterations, its feasibility version
is used to solve the Phase-III assignment sub-
problem to extend the partial schedule to a com-
plete solution. The BPC model for finding the
lower bound (BPC-LB) is obtained by construct-
ing the edge set E checking only conditions i)
and ii). The feasibility version of the BPC model
for finding a feasible assignment to the original
problem (BPC-FEAS) can be obtained by con-
structing E checking all three conditions.

Obtaining a Lower Bound
We obtain a lower bound to the DDX-

PSMPR by solving the BPC-LB model. How-
ever, a BPC is NP-hard as it directly generalizes
the bin-packing problem with no conflicts
(BPP) which is known to be NP-hard (Garey
and Johnson 1979). Hence our focus is to obtain
a lower bound to the BPC. Two lower bounds
for the BPC have been studied by Gendreau,
Laporte et al. (2004): L1 5 Ø

PjVj
i 5 1 wi=We is the

simple lower bound to the BPP; while the so
called constrained packing lower bound also
takes conflict constraints into account. Their
computational study indicates that the quality
of the two lower bounds depends largely on
the density of the conflict graph G. Specifically,
when the density value is below 30% they are al-
most identical. Since the conflict graph associ-
ated with our DDX sailor assignment BPC
is rather sparse (see computational results in
Table 5), L1 would be a reasonable choice.
Martello and Toth (1990) have shown that L1

has a worst-case performance of 1/2 and only
performs well when sizes of items wi (durations
of activities in our case) are sufficiently small
with respect to the workload capacity W, which
may not be true in real-world problems. Hence
instead of using L1, we use the better lower bound
L2 in Martello and Toth (1990), which is proved to
have a worst-case performance of 2/3 and always
dominates L1 . L2 is obtained by differentiating
items with size larger and smaller than half of
the bin capacity. We refer to Martello and Toth

(1990) for a detailed description of the procedure
to obtain L2 with a time complexity of O(n).

A HYBRID DECOMPOSITION
ALGORITHM

Many recent studies have shown the effi-
ciency and effectiveness of hybrid constraint
programming (CP) and mixed-integer linear
programming (MILP) approaches for solving
challenging combinatorial optimization prob-
lems (see, for example, Easton, Nemhauser et al.
(2004), Benoist, Laburthe et al. (2001), Eremin
and Wallace (2001), Jain and Grossmann (2001),
Chu and Xia (2005), Timpe (2002), and Hooker
(2004) among others). CP is generally good at
solving scheduling problems due to its effective-
ness in handling binary constraints through arc
consistency algorithms (Hooker 2002). In addi-
tion, the descriptive nature of CP often makes
a model compact and flexible, hence considerably
reduces the size of a model and makes the model
easy to modify in a changing real-world environ-
ment. The drawback of CP, however, is its lack of
relaxation techniques or bounds which are well
developed in the OR community (Hooker 2002).
It is often costly for CP alone to explore the entire
solution space in a naı̈ve fashion of gradually
tightening the objective function (for a general
introduction of constraint propagation and se-
arch algorithms used in CP, we refer to Marriott
and Stuckey (1998)). On the other hand, the MILP
approach often depends on disjunctive pro-
gramming formulation for modeling scheduling
constraints, which results in a large number of
sequencing variables and big-M formulations
(as in Constraints (10) through (12)) that make
the relaxation less effective. Hence our core con-
sideration in designing hybrid approach for solv-
ing the DDX-PSMPR is to separate the scheduling
aspect and assignment aspect of the problem and
use CP to handle the scheduling sub-problem,
which is otherwise difficult for MILP to handle.

The three-phase hybrid algorithm for
solving the DDX-PSMPR can be sketched as
follows. Given a lower bound N

2
of the number

of sailors (which is L2 obtained in the previous
section), Phase-I of the procedure models and
solves a single-mode RCPSP feasibility prob-
lem (RCPSP-FEAS) by CP methods to obtain
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a feasible schedule VCP. Then VCP is used to
construct the corresponding conflict graph G(V,
E), according to Observation O1). Phase-II sol-
ves a resource leveling problem with general
temporal relations and explicit resource con-
straints to reduce the density of G(V, E) with
the objective function of minimizing the num-
ber of overlapping activities in the schedule. It
‘‘smoothes’’ the schedule VCP obtained in
Phase-I to get a less sparse conflict graph G#(V,
E), which leads to a less restrictive BPC problem
to be solved in Phase-III (Observation O2)) and
potentially a better objective value to the origi-
nal problem. Due to the NP-hardness of the
Phase-II resource leveling problem itself, we de-
sign a tabu search (TS) metaheuristic to get
a well-smoothed schedule within reasonable
computational time. Finally, Phase-III solves
a feasibility version of the BPC problem (BPC-
FEAS described in the previous section) based
on G#(V, E) to obtain a complete feasible solu-
tion to the original DDX-PSMPR problem.

Phase-I Scheduling Subproblem
Define Sailors as a discrete resource with capac-

ity N by treating the N sailors homogeneously.
Now the Phase-I single-resource RCPSP-FEAS CP
model written in OPL, a programming language
that supports both mathematical programming
and constraint programming ((Van Hentenryck
1999) and (ILOG 2005)), is described as follows:

RCPSP-FEAS

f

activity½i�:start 2 dij $ activity½j�:start

"ði; jÞ 2 F
(18)

activity½j�:start 1 pj # minfdj; �Tg "j 2 J

(19)

activity½j� requires ðjKjjÞ Sailors "j 2 J (20)

Niter :5 Niter 2 1 1 1 ðiter $ 1Þ (21)

N0 5 L2 (22)

g

The italicized words in (18) through (22) are
keywords in OPL (except the notations for sets

and parameters). Constraints (18) and (19) take
care of the general temporal relations as in
Constraints (6) and (7). Constraints (20) specify
the resource constraints, i.e., task j requires jKjj
units of the discrete resource Sailors. Notice that
no sequencing variables or big-M formulations
are needed in the CP formulation, thus the
model size is considerably reduced. RCPSP-
FEAS is a relaxed version of the scheduling side
of the original DDX-PSMPR in the following
ways: i) the set of sailors is treated homoge-
neously as a single discrete resource prior to being
assigned with skills; ii) an activity is defined to
be associated with each task instead of each re-
quired skill. It follows that an activity has only
one way (mode) to be executed, thus reducing
the original scheduling problem into a single-
mode RCPSP. Furthermore, RCPSP-FEAS ob-
tains a feasible solution instead of an optimal
one, which further reduces the computational
effort. Next we state the following property.

Property 1. If RCPSP-FEAS is infeasible, the
original DDX-PSMPR is infeasible.

Proof. It follows from the fact that RCPSP-
FEAS is a relaxed problem of DDX-PSMPR.
Q.E.D.h

Infeasibility of the RCPSP-FEAS indicates
that no feasible solution to the original problem
exists at the current capacity N. Then one needs
to add a ‘‘cut’’ that increases N to resolve in-
feasibility. This is achieved by Constraint (21),
which increments the capacity of Sailors by
one at iteration i over the previous iteration
i 2 1 of the procedure. It excludes all solutions
with N or less than N sailors. Constraint (22) ini-
tiates N0 to be L2.

Phase-II Resource Leveling
Procedure

Let V be any feasible schedule to RCPSP-
FEAS. The Phase-II procedure solves a resource
leveling problem minimizing the number of
overlapping tasks in V. Let AV(t) be the set of ac-
tivities in progress at time t, also called active set,
i.e.,

A
VðtÞ :5 f j 2 Vjtj # t , tj 1 pjg

"t 2 f0;.; �Tg
(23)
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Then the number rV(t) of Sailors used at
time t can be obtained as:

r
VðtÞ :5

P

j2A
VðtÞ
jKjj "t 2 f0;.; �Tg (24)

We define xij as a binary variable which
equals 1 if activities i and j overlap and 0 other-
wise. We also define endij as the maximum end
time of i and j; startij as the minimum start time
of i and j. The Phase-II resource leveling prob-
lem can be described as follows:

min foverlapðVÞ5
X

i2V

X

j2V;j . i

xij

subject to:
Temporal constraints (4) through (7)

startij # ti "ði; jÞ 2 V 3 V; j . i (25)

startij # tj "ði; jÞ 2 V 3 V; j . i (26)

endij $ ti 1 wi "ði; jÞ 2 V 3 V; j . i (27)

endij $ tj 1 wj "ði; jÞ 2 V 3 V; j . i (28)

M � xij $ wi 1 wj 2 ðendij 2 startijÞ
"ði; jÞ 2 V 3 V; j . i

(29)

r
VðtÞ# Niter "t 2 f0;.; �Tg (30)

ti $ 0; xij 2 f0; 1g

If the right-hand side of (29) is positive, then
xij will be forced to be 1. Constraints (30) de-
scribe the resource constraints, i.e., the total re-
source utilization rV(t) at time t of the discrete
resource Sailors cannot exceed its capacity Niter

at iteration iter. Following Baker (1974), an ob-
jective function is called regular if f# . f implies
tj# . tj for some j 2V. Clearly, the objective func-
tion foverlap (V) studied here belongs to the class
of nonregular objective functions as delaying an
activity does not necessary increase the objec-
tive function value. Most of the existing priority
rule based heuristics deal with regular objective
functions; non-regular objective functions often
require more than a simple heuristic. Thus we
propose a tabu search procedure for this re-
source leveling problem with foverlap (V). For ba-
sic concepts of tabu search, we refer to Glover

and Laguna (1997). It is important to point out
that solving the Phase-I RCPSP-FEAS sub-prob-
lem has served as the construction phase in tabu
search. That is, the non-smoothed feasible
schedule VCP from Phase-I is used as the initial
solution for the TS improvement procedure.

The Neighborhood. Various types of neighbor-
hoods have been proposed in the project sched-
uling literature (see Neumann, Schwindt et al.
(2003) for an updated survey). Most of them,
e.g., activity list based (Baar, Brucker et al.
(1997), Bouleimen and Lecocq (1998) and Cho
and Kim (1997)), random key based (Cho and
Kim (1997), Naphade, Wu et al. (1997)), schedule
scheme based (Baar, Brucker et al. 1997) neigh-
borhoods, deal with project scheduling problems
minimizing project makespan (regular objective
function) with only precedence relationships
among activities. The neighborhoods that can
handle both nonregular objective functions and
general temporal constraints include the simple
starting time vector (Icmeli and Erenguc 1994),
restricted starting time vector (Neumann and
Zimmermann 2000) and order-based neighbor-
hoods (Neumann, Schwindt et al. 2003). For sim-
plicity, we name them N1, N2 and N3,
respectively. Neighbors in N1 are obtained by
shifting some activity by one time unit within
its earliest-latest starting time window. Possible
violations of precedence constraints are penal-
ized by a penalty function. The neighborhood
structure in N2 is defined by the so called decision
set, which contains the ‘‘locally optimal’’ start
times for certain objective functions (Neumann,
Schwindt et al. 2002). The cardinality of a decision
set is usually linear in the number of activities,
restricting the number of time points to explore.
The time feasibility of a neighboring schedule is
preserved by updating the starting times of other
activities appropriately. Possible violations of re-
source constraints are allowed by imposing
a penalty cost function. N3 is based on the fact
that each feasible schedule can be associated with
some strict order in the activity set. N3 consists of
sets of spanning forests and spanning trees of so
called order-based networks exploiting the order-
based structure of the feasible region. N2 is ad-
vantageous over N1 in that the neighborhood
size is considerably smaller without sacrificing
effectiveness. The implementation of N3 requires
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complex data structures and to our knowledge
no empirical study has been reported about the
quality of N3. Hence we adapt N2 to cope with
the resource leveling problem minimizing the
number of overlapping activities ( foverlap (V) ).

Consider an unscheduled activity j with
earliest start time ESj ¼ 1, latest start time
LSj ¼ 8 and processing time pj ¼ 2 in a partial
schedule. The decision set Dj for foverlap (V) can
be illustrated by Figure 3. Two consecutive jump
discontinuities are t1¼ 2 and t2¼ 5 (a jump discon-
tinuity is a time point when at least one activity
is started or at least one activity is completed).
The decision set Dj is given by ft1, t2, ESj, LSjg,
where each decision point is marked by a 3

on the Time axis. Instead of exploring all the
time points f1,.,8g in the time window of j,
we consider only the four time points in the de-
cision set. It is straightforward to observe that
there exists a local minimizer t2 with a penalty
of 1 (activity j only overlaps with activity b caus-
ing the number of overlapping activities to in-
crease by 1).

For detailed mathematical description and
proof of the decision set employed in our ap-
proach, we refer to Neumann and Zimmermann
(1999).

Procedures for Implementing Tabu Search. Tabu
search introduced by Glover (1989a, 1989b) is
a local search metaheuristic to avoid local op-
tima in solving combinatorial optimization
problems. It repeatedly moves from the current
solution V to a schedule V# with the best objec-
tive value in the neighborhood of V denoted by
N (V). An important consideration in TS is to
prevent ‘‘cycling’’, i.e., prevent revisiting a solu-
tion recently visited. This is achieved by making

a move ‘‘tabu’’ for a predefined number of iter-
ations called tabu list size ( TL), which is also
known as short-term memory. If a new best solu-
tion is found, the tabu status of the correspond-
ing move is canceled (aspiration criterion). Next
we describe the main procedures for imple-
menting a simple TS that utilizes only the
short-term memory component.

Given the current schedule V, its neighbor
schedule V# is obtained by replacing the start-
ing time tj of any activity j 2 V by a time point
t in Dj. For simplicity, we use m(tj ) t) to repre-
sent this operation. A move m(tj ) t) is a valid
move if it satisfies the following conditions:
i) t 2Dj; ii) m cancels at least one pair of overlap-
ping activities; iii) m is resource feasible. Condi-
tion ii) further reduces the number of neighbors
to be considered. Condition iii) avoids the use of
a penalty cost function for possible violations of
resource constraints; it also reduces the number
of schedules to scan by excluding resource in-
feasible moves.

We choose NI as the maximum number of
iterations without improving the best objective
value f �overlap found so far. The TS algorithm for
the Phase-II resource leveling problem with
foverlap is summarized in Figure 4.

Simply executing a move m(tj ) t) does not
guarantee time feasibility to the temporal con-
straints. Define Reach(j) as the set of nodes in
the project network that can reach node i and
Reachable(j) as the set of nodes reachable from
node j. We then follow the approach in Neumann
and Zimmermann (1999) to keep time feasibility
of the schedule by making induced moves after
m(tj ) t) as described in Figure 5.

We let f (m) be the objective value of a move
m and f move denote the best move value. Figure 6

Figure 3. The neighborhood defined by Dj of activity j.
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summarizes the procedure for finding the best
move m* in the current neighborhood. We use
the standard aspiration criterion that if a move im-
proves the current best solution, its tabu status
(if any) will be canceled. We explore the entire
set of valid moves using first-improve-strategy
(FIS). That is, whenever an improvement over
the current objective value foverlap (V) is found
the neighborhood search is terminated and the
improvement move is set to be the best move
m*. FIS helps to speed up the search, especially
at the early stage of the algorithm.

The Decomposition Algorithm
Figure 7 depicts the framework of our three-

phase decomposition heuristic for solving the
DDX-PSMPR.

The algorithm starts by obtaining a lower
bound L2 on the number of sailors needed. L2

is then used to initialize the capacity N0 of the
discrete resource Sailors in the Phase-I RCPSP-

FEAS sub-problem to start the procedure. To re-
solve infeasibility of the Phase-I sub-problem,
a ‘‘cut’’ (we call it Cut-1) is generated by increas-
ing Niter by one, i.e., setting Niter :¼ Niter 11 to
exclude all solutions with Niter sailors. Cut-1 is
a valid cut, as infeasibility of RCPSP-FEAS
proves that the original DDX-RCPSP is not fea-
sible under the current availability of Ni sailors
(Property 1). This process repeats until a feasible
schedule VCP is found to the RCPSP-FEAS. Re-
call that the activities in our model include both
real tasks and rest periods. Increasing the num-
ber of sailors not only increments the resource
capacity, but also creates new rest periods asso-
ciated with the newly added sailor(s) to sched-
ule. Hence, we always obtain a different
schedule from Phase-I, which prevents cycling,
i.e., feeding the same schedule to the Phase-III
BPC-FEAS problem. Our computational study
has indicated no such problem of cycling for
the tested problems.

The procedure then proceeds with the
Phase-II resource leveling procedure minimiz-
ing the number of overlapping activities (Algo-
rithm TS) to get a smoothed schedule VTS with
fewer number of overlapping activities for con-
structing the Phase-III BPC-FEAS sub-problem.
The Phase-II procedure further makes the par-
tial schedule different from the one in the previ-
ous iteration.

Infeasibility of BPC-FEAS indicates that Niter

sailors are not sufficient to support VTS. This is
due to the workload and maximum number of
skills constraints, which have not been consid-
ered in the scheduling phases (Phase-I and
Phase-II) of the decomposition procedure. Hence
another cut (Cut-2) is added by increasing Ni by
one and a new iteration starts. Cut-2, however,
may or may not be a valid cut since there may ex-
ist some schedule other than VTS under the same
current capacity Niter that could make the Phase-
III sub-problem feasible. Hence our decomposi-
tion algorithm may or may not achieve optimal-
ity as long as Cut-2 is generated. If only Cut-1 is
generated during the procedure, however, it is
straightforward to prove that the solution found
by our algorithm is optimal by Property 1. The
key component in this decomposition algorithm
is the Phase-II resource leveling procedure. It
produces a smoother schedule, thus a less re-
strictive BPC to be solved in Phase-III.

Figure 4. Algorithm TS.

Figure 5. Procedure 1 to repair a schedule to be time
feasible.
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COMPUTATIONAL EXPERIMENTS
Since currently there is no benchmark for

the addressed problem and the sensitive data
from the Navy could not be used directly, we
generate problem instances for algorithm test-
ing purposes. As the DDX-PSMPR shares com-
mon data concerning the project network with
the resource constrained project scheduling
problem (RCPSP), we adapt the project schedul-
ing part of the RCPSP instances for the DDX-
PSMPR. A well-known problem generator of
RCPSP is ProGen, which was used to generate
the RCPSP benchmark bank PSPLIB (Kolisch,
Sprecher et al. 1995). However, ProGen gener-
ates RCPSP problems with only precedence
constraints. Hence we use ProGen/max
(Schwindt 1996) that is able to generate RCPSP
with general temporal constraints: minimal and
maximal time lags.

In order to evaluate the performance of
our decomposition algorithm compared with
CPLEX, we have concentrated on the problem
space where CPLEX had a chance to find quality
solutions. We control two factors affecting the
problem size of DDX-PSMPR: the number of

tasks jJj and number of skills jKj in the project.
Let jJj2 f10, 30, 60g and jKj2 f4, 8g. We also con-
trol another important factor, the deadline T

2
on

the project makespan. We follow Drexl and
Kimms (2001) to control �T:

�T 5 DF�max
j2J

EFj "j 2 J ; (31)

where EFj is the earliest finishing time of
task j. We set DF ¼ 1.25 for the scenario with
a ‘‘tight’’ deadline and allow a 50% longer dead-
line for the ‘‘loose’’ deadline scenario. That is,
we allow DF vary in the set f1.25, 1.875g. There
are 3 3 2 3 2¼ 12 combinations for the three fac-
tors. For each combination we generate 5 in-
stances, i.e., 5 3 12 ¼ 60 test instances in total.
In our experiments, the maximum number of
skills assigned to each sailor � is set to be 7. Ta-
ble 2 summarizes the main information about
these instances.

The Phase-I scheduling sub-problem is
modeled and solved using ILOG Solver 6.0
(ILOG 2003a) and ILOG Scheduler 6.0 (ILOG
2003d) by constraint programming. The Phase-
II tabu search procedure is coded in C11 and

Figure 6. Procedure 2 to find the best move in the neighborhood.
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connected with other phases through the
C11 API provided by ILOG Concert Technol-
ogy 2.0 (ILOG 2003b). The Phase-III BPC-FEAS
integer program is solved by ILOG CPLEX
9.0 (ILOG 2003c). All computations are per-
formed on Pentium IV PC with 2.8 GHz CPU
speed and 512Mb RAM. A running time limit

of 10 seconds is imposed for Phase-I and
Phase-III each. We set NI ¼ 20 for the tabu
search procedure. Our computational ex-
perience indicates that a small tabu list size TL
often enables the TS procedure to improve the
objective function fast. A good candidate for
TL is 2.

Figure 7. Flow chart of the three-phase hybrid decomposition algorithm.
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Model and Algorithm Performance
Table 3 provides the computational results

on the 60 test instances. We report the objective
value (Obj), number of iterations (Iter) of the de-
composition algorithm and running time (CPU
in seconds) for finding the best solutions. In or-
der to show the important role of the Phase-II
tabu search for resource leveling, we record
the results of both the three-phase hybrid de-
composition algorithm with tabu search (we call
it Three-Phase) and the two-phase hybrid algo-
rithm without tabu search (we call it Two-
Phase). An underlined Obj value indicates that
Three-Phase finds a better solution than Two-
Phase does. Clearly, Three-Phase finds more

better solutions when the deadline is loose. This
is because a loose deadline leaves more ‘‘room’’
for the resource leveling procedure in Phase-II
to reduce the number of overlapping tasks,
hence achieving more density reduction of the
corresponding conflict graph. As the deadline
becomes tight, however, not much resource
leveling can be achieved in Phase-II, thus the
performance of Three-Phase converges to Two-
Phase.

As for computational efficiency, we observe
that Three-Phase always requires fewer itera-
tions than Two-Phase to find equal or better
quality solutions for the tested instances. This
is because the resource leveling phase makes
the Phase-III assignment problem easier to

Table 2. Summary of the Test Instances. W 5 maxfW0; u � �T g, where W0 ¼ 40.

Loose deadline DF ¼ 1.875 Tight deadline DF ¼ 1.25

Instance name jJj jKj jSj �T(hrs) W(hrs) �T(hrs) W(hrs)

DDX1_10T_4S 10 4 20 75 40 50 40
DDX2_10T_4S 10 4 20 75 40 50 40
DDX3_10T_4S 10 4 20 75 40 50 40
DDX4_10T_4S 10 4 20 75 40 50 40
DDX5_10T_4S 10 4 20 75 40 50 40
DDX1_10T_8S 10 8 30 75 40 50 40
DDX2_10T_8S 10 8 30 75 40 50 40
DDX3_10T_8S 10 8 30 75 40 50 40
DDX4_10T_8S 10 8 30 75 40 50 40
DDX5_10T_8S 10 8 30 75 40 50 40

DDX1_30T_4S 30 4 30 180 64 120 40
DDX2_30T_4S 30 4 30 180 64 120 40
DDX3_30T_4S 30 4 30 210 72 140 48
DDX4_30T_4S 30 4 30 180 64 120 40
DDX5_30T_4S 30 4 30 270 96 180 64
DDX1_30T_8S 30 8 50 180 64 120 40
DDX2_30T_8S 30 8 50 180 64 120 40
DDX3_30T_8S 30 8 50 210 72 140 48
DDX4_30T_8S 30 8 50 180 64 120 40
DDX5_30T_8S 30 8 50 270 96 180 64

DDX1_60T_4S 60 4 50 360 120 240 80
DDX2_60T_4S 60 4 50 360 120 240 80
DDX3_60T_4S 60 4 50 480 160 320 112
DDX4_60T_4S 60 4 50 330 112 220 80
DDX5_60T_4S 60 4 50 300 104 200 72
DDX1_60T_8S 60 8 60 360 120 240 80
DDX2_60T_8S 60 8 60 360 120 240 80
DDX3_60T_8S 60 8 60 480 160 320 112
DDX4_60T_8S 60 8 60 330 112 220 80
DDX5_60T_8S 60 8 60 300 104 200 72
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solve. Not surprisingly, Three-Phase generally
spends more computational time than Two-
Phase on average due to the additional resource
leveling phase. Given the nature of the schedul-
ing problem considered in this paper, one
would probably favor solution quality more
than speed. Interestingly, for problems with 10
tasks, 8 skills and a loose deadline, Three-Phase
requires less overall computational time while
finding better solutions. This is because the size
of these problem instances is so small that each
run of the Phase-II tabu search procedure

spends less than 1 second, which is trivial com-
pared to the overall computational time.

Figure 8 shows the average percentage of
reduction in objective value by the Three-Phase
algorithm over the Two-Phase algorithm when
jJj and jKj vary. The Three-Phase algorithm
dominates Two-Phase in the entire problem
space defined by jJj and jKj, due to the effective
role of the Phase-II resource-leveling. On aver-
age, the tabu search procedure in Phase-II is able
to eliminate 35% of the overlapping activities,
i.e., to reduce the density of the conflict graph

Table 3. Computational results of the Three-Phase and Two-Phase Decomposition Algorithms.

Loose deadline DF ¼ 1.875 Tight deadline DF ¼ 1.25

Three-Phase Two-Phase Three-Phase Two-Phase

Instance name Obj Iter CPU(s) Obj Iter CPU(s) Obj Iter CPU(s) Obj Iter CPU(s)

DDX1_10T_4S 5 2 2.38 5 2 0.20 5 1 0.13 5 1 0.11
DDX2_10T_4S 5 2 2.20 5 2 0.16 5 2 0.61 5 2 0.16
DDX3_10T_4S 4 2 1.72 7 5 0.64 5 2 0.97 7 4 0.43
DDX4_10T_4S 5 2 2.83 5 2 0.49 5 2 0.66 5 2 0.05
DDX5_10T_4S 4 2 1.52 5 3 0.36 4 2 0.67 5 3 0.38
DDX1_10T_8S 9 2 5.44 10 4 13.16 11 3 22.42 11 3 21.69
DDX2_10T_8S 10 3 23.64 11 4 38.30 11 4 30.99 11 4 38.31
DDX3_10T_8S 10 2 11.78 13 5 41.19 11 4 33.41 13 5 41.75
DDX4_10T_8S 11 3 22.84 12 4 30.23 12 4 31.01 12 4 30.19
DDX5_10T_8S 13 5 45.44 15 7 60.34 15 7 30.91 15 7 30.20

DDX1_30T_4S 7 2 52.29 9 4 30.22 11 2 28.83 11 2 10.16
DDX2_30T_4S 7 2 30.36 7 2 10.13 11 2 22.94 11 2 10.17
DDX3_30T_4S 8 3 105.56 9 4 30.33 11 2 24.59 11 2 10.16
DDX4_30T_4S 7 2 33.61 7 2 10.13 11 3 51.90 11 3 20.22
DDX5_30T_4S 7 3 79.95 7 3 21.22 9 3 50.58 9 3 20.25
DDX1_30T_8S 21 6 248.20 23 7 62.64 32 5 120.92 32 5 42.34
DDX2_30T_8S 20 5 182.26 20 5 41.77 32 5 102.26 32 5 42.38
DDX3_30T_8S 18 4 153.39 18 4 31.34 27 6 146.37 27 6 52.23
DDX4_30T_8S 17 4 116.21 17 4 31.04 25 3 78.53 27 5 41.84
DDX5_30T_8S 14 4 205.42 17 7 62.39 22 6 181.75 23 7 62.41

DDX1_60T_4S 9 4 699.98 9 4 30.99 11 2 115.98 11 2 10.53
DDX2_60T_4S 9 3 755.36 12 6 51.91 13 3 369.31 13 3 20.86
DDX3_60T_4S 7 3 557.14 7 3 23.94 10 3 373.84 10 3 20.83
DDX4_60T_4S 10 4 577.62 10 4 31.02 12 2 90.62 12 2 10.56
DDX5_60T_4S 11 3 751.08 12 4 31.27 14 2 166.10 15 3 20.97
DDX1_60T_8S 18 4 1719.86 21 7 68.31 26 4 503.50 26 4 34.31
DDX2_60T_8S 23 7 3103.61 23 7 69.75 30 6 1364.35 30 6 58.22
DDX3_60T_8S 16 4 1723.85 21 10 114.11 24 8 1947.94 27 10 115.83
DDX4_60T_8S 21 5 1185.54 23 7 68.14 29 6 668.67 31 6 57.03
DDX5_60T_8S 22 4 923.43 22 7 34.89 32 6 627.00 32 6 58.20

1. Obj: objective value, number of sailors. Iter: number of iterations finding the solution. CPU(s): algorithm running
time in seconds.
2. Underlined values indicate that the Three-Phase algorithm finds a better solution than the Two-Phase algorithm.
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G(V,E) by 35%. It turns out that the conflict
graph G#(V,E) associated with the leveled
schedule is quite sparse with an average density
of 10%, which justifies our choice of the lower
bound L2.

Parameter effects on the behavior of the
DDX-PSMPR model are summarized by Table
4. As we can see, the number of skills jKj has
the greatest impact on the objective value to
the DDX-PSMPR. When jKj increases from 4 to
8, the average number of sailors needed is more
than doubled (from 8 to 19). This is mainly due
to the fact that the average number of skills re-
quired by each task increases as jKj increases.
Notice that the computational effort, repre-
sented by the average number of iterations
and running time, also increase significantly as
jKj increases. That is, a DDX-PSMPR problem
with a large jKj is often difficult to solve. Hence
an appropriate skill aggregation is critical in
deploying the model in practice.

The second most influential factor is the
deadline factor DF. The average number of
sailors needed increases 33% (from 12 to 16)
when the deadline of project becomes 50%
tighter (DF from 1.875 to 1.25). This reflects the
well-known time-resource/cost trade-off in pro-
ject management. A DDX-PSMPR problem with

a tighter deadline (smaller DF) is usually more
difficult to solve as more iterations are needed
for finding the best solution. However, this does
not necessarily mean that more computational
time is needed. Notice that the average running
time for DF ¼ 1.25 is only 54% of that for DF ¼
1.875, although an average of one more iteration
is needed for DF ¼ 1.25. In other words, the
three-phase decomposition algorithm spends
more time per iteration for problems with a loose
deadline. This is because the Phase-II tabu search
procedure is able to run longer given the same
parameter NI for problems with a loose deadline
(DF¼ 1.875). And more density reduction on the
conflict graph can be achieved for problems with
DF¼ 1.875, which is supported by our computa-
tional experience: about 22% overlapping is
eliminated for problems with DF ¼ 1.25, in con-
trast to almost 50% overlapping eliminated for
problems with DF ¼ 1.875.

Now we turn our attention to the effect of
the number of tasks jJj. Interestingly, the objec-
tive value of the DDX-PSMPR problem is not
significantly driven by jJj. When jJj increases, �T
usually increases too, making the workload of
each sailor increase proportionally (see Table
2). That is, when the number of items increases
the capacity of each bin increases simulta-
neously in a bin packing problem, which offsets
the effect of each other. (We do observe a big
change in objective value when jJj increases
from 10 to 30. It is because for jJj¼ 10 the work-
load is set to be the threshold W0¼ 40 instead of
following the proportional relationship to �T).
What drives the number of needed sailors is
not necessarily the number of tasks in the pro-
ject, but the complexity of skill requirement
(jKj) and how constrained the project network
is (�T). This is a desirable behavior of our DDX-
PSMPR model. One often needs to schedule
projects with different scheduling horizon in

Figure 8. Average percentage of reduction in objec-
tive value by Three-Phase over Two-Phase when jJj
and jKj vary.

Table 4. Effects of parameters on the model and Three-Phase algorithm performance.

jJj jKj DF

Performance 10 30 60 4 8 1.875 1.25

Avg. Obj 8 16 17 8 19 12 16
Avg. Iter 3 4 4 2 5 3 4
Avg. CPU(s) 13.58 100.79 916.03 165.04 521.89 444.15 242.78
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practice and it is possible for the same number
of sailors to perform projects with different
lengths. Furthermore, we notice that the number
of iterations does not increase significantly as jJj
increases, which indicates that having more
tasks in the project does not necessarily make
the problem more difficult for our decomposi-
tion algorithm to solve. However, the running
time needed for finding the best solution does
increase. This is because more computational
effort is needed to obtain a smoothed schedule
in Phase-II due to a larger neighborhood size.

We also record the number of skills
assigned to each sailor for problem instances
with 60 tasks and 8 skills. Figure 9 shows the av-
erage percentage of each category of sailors clas-
sified by the number of assigned skills. Sailors
with five skills consist of the largest portion
(29%) of the crew. Only a smaller portion of
the crew is required to possess extremely large
or small number of skills, which seems to be
a desirable behavior of the model.

Comparison with Lower Bound and
CPLEX

Table 5 presents the computational results
of the three-phase hybrid decomposition algo-
rithm compared with the lower bound L2 and
CPLEX. L2 may or may not be feasible as it is
a lower bound to the BPC-LB discussed earlier.
CPLEX is used to solve the MILP model at equa-
tions 1–14. We have chosen a CPLEX parameter
setting that balances feasibility and optimality.
A running time limit of 50 hours is imposed
for CPLEX on each instance. The CPLEX solu-
tions reported in Table 5 are the best solutions
found by CPLEX within the time limit. An

empty entry indicates that CPLEX could not find
a feasible solution within the time limit or ran
out of memory. Numbers in bold font indicate
the solutions to the corresponding problem in-
stance are optimal. As CPLEX may spend a long
time trying to prove optimality before terminat-
ing, to make a fair comparison we report the
time CPLEX spends reaching an optimal solu-
tion instead of the total running time for proving
optimality.

We evaluate the performance of Three-
Phase and CPLEX on the basis of the following
criteria:

i) the percentage of instances for which a
feasible solution is found ( rfeas ),

ii) the percentage of instances for which an
optimal solution is found and optimality is
proven ( ropt ),

iii) the mean percentage deviation dev LB of the
objective value found from lower bound LB,
and

iv) the mean computation time for finding the
best solution in seconds ( t cpu ).

While rfeas and ropt refer to all instances,
devLB and tcpu correspond only to the instances
for which a feasible solution is found by the re-
spective approach.

At first, we compare the overall perfor-
mance of our Three-Phase algorithm and
CPLEX in Table 6. Three-Phase is able to solve
all 60 problem instances, whereas CPLEX fails
to find feasible solutions for 21 instances. Most
of the unsolved instances by CPLEX are large
in size. For instance, a typical instance with 60
tasks and 8 skills results in an MILP model of
50,000 variables (columns) and 2,000,000 con-
straints (rows), which is formidable for CPLEX
to handle. As for the algorithm effectiveness,
Three-Phase has an average gap from the lower
bound of less than 10% and reaches optimality
for 20 instances. (One can verify that Three-Phase
also proves optimality for these 20 instances as
the lower bound is equal to the objective value
of the solution found by Three-Phase.) CPLEX
on average has a higher gap and is only slightly
better in finding and proving optimality for
21 instances. As for the algorithm efficiency,
Three-Phase spends less than 7 minutes aver-
agely for finding the best solution for an instance,
while it takes CPLEX averagely 5.5 hours, which

Figure 9. Average crew composition of problem in-
stances with 60 tasks, 8 skills and maximum number
of assigned skills � ¼ 7.
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is nearly 60 times the amount of time required by
Three-Phase.

Next, we compare the performance of
Three-Phase and CPLEX in different problem
spaces. Table 7 compares the above per-
formance criteria given different number of
tasks. Clearly, the ability of CPLEX to find fea-
sible solutions drops significantly as the num-
ber of tasks increases. CPLEX’s solution
quality also deteriorates as reflected by the
drastic increase in devLB. To be specific, CPLEX
has a slight advantage in devLB when the
number of task is small (10 tasks), then

CPLEX is 50% higher in devLB when jJj in-
creases to 30, and is almost three times as high
as the devLB of Three-Phase when jJj reaches

Table 5. Comparison with lower bound and CPLEX.

Loose deadline DF ¼ 1.875 Tight deadline DF ¼ 1.25

CPLEX Three-Phase CPLEX Three-Phase

Instance name L2 OBJ CPU(s) OBJ CPU(s) L2 OBJ OBJ CPU(s)

CPU(s)
DDX1_10T_4S 5 5 3.42 5 2.38 5 5 89.22 5 0.13
DDX2_10T_4S 5 5 5.53 5 2.20 5 5 90.84 5 0.61
DDX3_10T_4S 4 4 458.93 4 1.72 4 5 65.42 5 0.97
DDX4_10T_4S 5 5 143.29 5 2.83 5 5 98.49 5 0.66
DDX5_10T_4S 4 4 1.89 4 1.52 4 4 25.14 4 0.67
DDX1_10T_8S 9 9 1207.90 9 5.44 9 11 21236.30 11 22.42
DDX2_10T_8S 9 10 445.69 10 23.64 9 10 6647.56 11 30.99
DDX3_10T_8S 10 10 1622.04 10 11.78 10 10 2157.72 11 33.41
DDX4_10T_8S 10 12 2185.83 11 22.84 10 11 6660.44 12 31.02
DDX5_10T_8S 10 11 1924.32 13 45.44 10 13 20.56 15 30.91

DDX1_30T_4S 7 7 47330.20 7 52.29 11 11 8196.03 11 28.83
DDX2_30T_4S 7 7 3521.73 7 30.36 11 11 5288.33 11 22.94
DDX3_30T_4S 7 7 4398.56 8 105.56 11 11 8243.53 11 24.59
DDX4_30T_4S 7 7 73912.70 7 33.61 10 11 2140.55 11 51.90
DDX5_30T_4S 6 6 46758.10 7 79.95 8 8 21986.80 9 50.58
DDX1_30T_8S 18 - - 21 248.20 29 - - 32 120.92
DDX2_30T_8S 18 - - 20 182.26 29 38 33420.30 32 102.16
DDX3_30T_8S 16 - - 18 153.39 23 29 27176.60 27 146.37
DDX4_30T_8S 15 - - 17 116.21 24 39 59316.10 25 78.53
DDX5_30T_8S 12 26 44129.00 14 205.42 18 26 103997.00 22 181.75

DDX1_60T_4S 7 - - 9 699.98 11 15 75260.40 11 115.74
DDX2_60T_4S 8 - - 9 755.36 12 21 58725.20 13 369.31
DDX3_60T_4S 6 - - 7 557.14 9 - - 10 373.84
DDX4_60T_4S 8 - - 10 577.75 12 14 97347.00 12 90.62
DDX5_60T_4S 10 - - 11 751.18 14 17 26064.80 14 166.10
DDX1_60T_8S 16 - - 18 1719.86 24 - - 26 503.50
DDX2_60T_8S 18 - - 23 3103.61 27 - - 30 1364.35
DDX3_60T_8S 14 - - 16 1723.85 19 - - 24 2043.80
DDX4_60T_8S 18 - - 21 1186.18 25 - - 29 668.67
DDX5_60T_8S 20 - - 22 923.92 28 - - 32 627.00

Table 6. Comparison of overall performance of
Three-Phase and CPLEX.

Three-Phase CPLEX

rfeas 100.00% 65.00%
ropt 33.33% 35.00%
devLB 9.16% 11.04%
tcpu 343.47 20316.17
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60. CPLEX also spends a considerably large
amount of time (almost 18 hours) averagely
for finding feasible solutions to large instances
with 60 tasks. But realize that in reality, an
onboard project can easily include hundreds of
tasks which will be formidable for CPLEX to
handle.

Table 8 compares the algorithm performance
when the number of skills changes. Again Three-
Phase shows advantage over CPLEX in both so-
lution quality and speed. Also notice that the
mean deviation from the lower bound increases
when jKj increases. The reason for this is proba-
bly that the presence of more skills results in
a larger density of the conflict graph, hence the
quality of the lower bound L2 decreases. In this
case, the quality of the lower bound can be im-
proved by replacing L2 with the constrained
packing lower bound (Gendreau, Laporte et al.
2004).

We now turn to the effect of DF on the algo-
rithm performance presented in Table 9. Inter-
estingly, CPLEX finds fewer feasible solutions
to problems with a loose deadline than those
with a tight deadline. For those solved prob-
lems, though, CPLEX finds solutions with better
quality. In contrast, Three-Phase appears to be
more robust in solution quality.

In order to explore the performance of our
decomposition algorithm on larger problems,

we add additional 2 GB physical memory to
the testing PC (from 512 Mb to 2512 Mb) and
were able to solve problems of larger size. Table
10 shows the computational results on five large
instances. None of these instances were able to
be handled by CPLEX. The memory was
exhausted even before the model was extracted
by CPLEX, not to mention the computational
process.

Our computational experience indicates
that memory may become an issue for solving
problems with reasonably large size. As we
attempted to further increase the problem size,
both decomposition algorithms ran out of mem-
ory after several iterations. This difficulty can
certainly be avoided by using super computers
to perform the computation.

CONCLUSIONS AND FUTURE
RESEARCH

In this paper, we have formulated and stud-
ied the prototype of the U.S. Navy’s DDX man-
power scheduling problem modeled as a project
scheduling problem with multi-purpose re-
sources (PSMPR). It attempts to find not only
the optimal schedule of on-board operations
but also the optimal assignment (skill-mix)
of sailors, providing a new approach for

Table 7. Comparison of performance when jJj varies.

10 30 60

Three-Phase CPLEX Three-Phase CPLEX Three-Phase CPLEX

rfeas 100.00% 100.00% 100.00% 75.00% 100.00% 20.00%
ropt 55.00% 60.00% 30.00% 45.00% 15.00% 0.00%
devLB 7.88% 6.05% 8.21% 12.50% 11.40% 30.47%
tcpu 13.58 2254.53 100.79 32654.37 916.03 64356.10

Table 8. Comparison of performance when jKj
varies.

4 8

Three-Phase CPLEX Three-Phase CPLEX

rfeas 100.00% 80.00% 100.00% 50.00%
ropt 60.00% 60.00% 6.67% 10.00%
devLB 5.38% 6.38% 12.95% 18.48%
tcpu 165.04 20007.63 521.89 20809.82

Table 9. Comparison of performance when DF
varies.

1.875 1.25

Three-Phase CPLEX Three-Phase CPLEX

rfeas 100.00% 53.33% 100.00% 76.67%
ropt 33.33% 40.00% 33.33% 30.00%
devLB 9.19% 6.29% 9.13% 14.34%
tcpu 444.15 14253.07 242.78 24533.97
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determining the personnel composition in
a both time and resource constrained schedul-
ing environment. Unlike the traditional crew
rostering models, our model treats the time-off
periods as activities in a project and determines
their optimal number and starting times flexi-
bly. An advantage of this modeling approach
is its ability to incorporate both scheduling
and rostering problems into one problem while
considering multi-skilled personnel.

We also present a hybrid decomposition
heuristic algorithm that incorporates constraint
programming (CP) for handling the scheduling
part of the problem, and a simple tabu search
(TS) that utilizes only short-term memory for
the resource leveling phase. Test instances were
generated to evaluate the algorithm perfor-
mance. Our algorithm is also compared with
CPLEX and lower bounds obtained from a bin
packing with conflicts (BPC) model. Experi-
mental results show that our algorithm is able
to find feasible solutions to all test instances
and achieves satisfactory solution quality while
spending only 1.6% of the computational time
required by CPLEX on average. As the problem
size increases, the advantage of our algorithm
over CPLEX increases in both solution quality
and speed. These indicate that our algorithm
is highly promising in dealing with large size
problems in the real world.

Our current model does not capture all the
complexities of the DDX problem. Many side
constraints need to be considered when dealing
with the real world scenario. One may consider
constraints concerning sailors’ welfare and pref-
erences as often encountered in personnel
scheduling and planning. For example, rest pe-
riods have to be distributed evenly during the
planning horizon; a sailor prefers not working
during weekends and so on. While not easily

modeled by integer programming, these side
constraints can be elegantly expressed by CP.
Once the relevant data become available, our
goal is to obtain the realistic version of the
DDX manning problem and to deploy this deci-
sion tool for the Navy.

From an algorithmic perceptive, there is still
room for improving the solution quality by tun-
ing the Phase II TS resource leveling procedure.
For example, the tabu list size may be tuned for
problems with different size; intensification and
diversification that utilize intermediate and
long term memory may be added into the sim-
ple TS framework for some difficult problem in-
stances. It will also be interesting to seek ways to
reduce the memory requirement of the decom-
position algorithm, which is especially impor-
tant for solving large size problems.
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